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Abstract-Distribution System Operators (DSOs) can mitigate
future grid congestion problems in low-voltage grids by applying
smart charging algorithms to electric vehicles (EVs). However,
application of real-time smart charging of EVs to mitigate local
grid congestion could be problematic when aggregators cost
optimize EV charging by trading in electricity markets, as a
deviation from the charging schedule for the provision of local
grid services can lead to imbalance costs to the aggregator.
Therefore, grid congestion problems should be forecasted, so
aggregators can consider grid congestion in their electricity
market bids and imbalance costs can be avoided. This study
proposes a framework for mitigating grid congestion using EV
smart charging, using probabilistic day-ahead forecasts of the
grid load. The effectiveness of the proposed system in mitigating
grid congestion is tested using day-ahead quantile regression
forecasts for photovoltaic (PV) generation. Results indicate that
transformer congestion problems reduce considerably when using
probabilistic PV forecasts in EV scheduling. Considering a higher
percentile in the PV generation forecast when scheduling EVs
reduces grid congestion but marginally increases EV charging
costs.

Index Terms-EV Charging, Photovoltaic Generation Forecast
ing, Quantile Regression, Low Voltage Grid, Distribution System
Operator

I. INTRODUCTION

Efforts to decarbonize our energy and transport system
result in high adoption of distributed energy resources such
as photovoltaics (PV) and electric vehicles (EVs). The in
creasing penetration of these technologies increase the power
flows in low-voltage (LV) grids, potentially causing cable and
transformer congestion problems. Distribution System Opera
tors (DSOs) can relieve congestion by grid and transformer
reinforcements, or by actively managing the grid through
the deployment of flexibility options. The latter option is
preferable from a cost and emission perspective [1].

EVs are considered as an attractive technology for the
provision of grid services. The share of EVs in the car fleet is

This study was supported by the European Regional Development Fund
'EFRO Kansen voor West II' through the project 'Smart Solar Charging' and
by the Dutch Enterprise Agency (RVO) through the project 'Slim laden met
flexibele nettarieven in Utrecht (FLEET)'.

expected to grow rapidly in coming years [2], stimulated by
imposed governmental targets and price reductions for battery
systems. Most EVs will be charged in LV grids, causing that
a large number of EVs will be connected to the grid in the
future. As the connection time to the charging station of EVs
generally largely exceeds the time to fully charge the car,
the charging schedules of these EVs can be altered in order
to provide grid services [3]. The potential for using smart
charging of EVs to solve local grid congestion problems has
been studied in recent work [4], [5], but this work considered
perfect foresight of grid loads and EV availability.

The stochastic nature of different grid loads, including PV
generation, is one of the main barriers for using EVs for
the provision of local grid services. An increasing share of
the EVs cost-optimize their charging demand on the different
electricity markets. Most of these markets have a closure time
well in advance of real-time operation, causing that charging
schedules should be determined at the moment of market
closure. Supporting the DSO in mitigating grid congestion
through a real-time alteration of the charging schedule from
the submitted charging schedule to the electricity market
results in imbalance costs. Ideally, grid congestion problems
can be forecasted before the closure of the electricity market,
so EV-owners or aggregators can consider this in their bids
and no real-time alterations from the charging schedules are
required to solve local grid congestion problems. In this way,
imbalance costs can be avoided.

Different studies have proposed stochastic optimization
models for EV or battery systems which consider the uncer
tainty in load or PV generation (e.g. [6], [7]). However, these
studies added uncertainty to their models by creating noise
around the actual load or PV generation using a probability
density function, instead of using actual forecasting methods.
As actual forecasts do not necessarily follow the probability
density functions from these studies, these studies do not
provide insight in how uncertainty in PV generation and load
can be considered in real-life operation.

Other studies considered actual forecasts in smart charging
algorithms for EVs and batteries, but focused on smart homes
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Fig. 1. PV power forecast results for September 16, 2016.

(2)

a 2-second resolution [13], [14]. As this study simulates grid
loads with a temporal interval of 15-minutes, the PV power
measurements are resampled to 15-minute averages. Further
more, the PV power production values are normalized to the
system's rated capacity. Subsequently, the power production
values are scaled to obtain production values for different PV
penetration scenarios. The power measurements are available
for the period 2014-2017. Moreover, 2014 and 2015 are used
to train the QR forecast model. The solar power forecasts are
generated for 2016.

The QR model is fed with a number of predictor variables.
These variables consider historical weather forecasts. These
are obtained from the High Resolution Forecast Configuration
(HRES) of the Integrated Forecast System (IFS), a Numerical
Weather Prediction model developed by the European Centre
for Medium-Range Weather Forecasts (ECMWF) [15]. The
collected variables are the global horizontal irradiance, air
pressure, ambient and dewpoint temperature, zonal and merid
ional wind speed, precipitation, and low, mid, high and total
cloud cover. These forecasts are collected at 12:00 UTC for
each hour of the following day. As the forecasted values are
given per hour, 15-minute values are found by assuming them
to remain constant throughout each hour.

B. Evaluation
The quality of the QR forecast model is examined by means

of the continuous ranked probability score (CRPS) [16]. The
CRPS is preferred over alternatives as it is a common applied
error metric that is able to evaluate both the sharpness and
reliability of the forecast [10]. Moreover, the CRPS rewards
a high concentration of the forecasted probability around the
target value. A small CRPS value indicates a good forecast
performance. The CRPS is calculated by:
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where F t (x) and Ft (x) are the Cumulative Distribution Func
tions (CDFs) of the probabilistic forecast and observations and
T represents the number of timesteps.

or medium-voltage (MV) grids [8], [9]. In addition, these
studies used point forecasts for PV generation, which do not
provide insights in the uncertainty around the forecasts. Given
the large uncertainty in PV generation, probabilistic forecasts
might be more appropriate. To the knowledge of the authors,
no previous studies have looked into the potential of mitigating
grid congestion problems in LV grids when considering actual
probabilistic forecasts for PV generation.

This study presents a system for the mitigation of trans
former congestion in LV grids using probabilistic forecasts
of the transformer load, and provides insight in how DSOs
can use probabilistic solar forecasts for the mitigation of
grid congestion in LV grids using smart charging of EVs.
Day-ahead quantile regression forecasts for PV generation
are applied to EVs in a case study grid in order to obtain
insight in the potential to mitigate transformer congestion
problems using EV smart charging when considering day
ahead forecasts. In this way, no real-time corrections in EV
charging schedules are required. The results of this analysis
can be used by DSOs to get more realistic insight in the
potential to mitigate grid congestion problems using EV smart
charging, guiding them in grid investment decisions.

This work is outlined as follows. Section II discusses
the quantile regression method used to generate probabilistic
forecasts for PV generation. Section III outlines a system for
the mitigation of transformer congestion in LV grids using
EVs, based on forecasts of the transformer load. The data
inputs used for modelling the proposed system are discussed
in Section IV. The effectiveness of the proposed system is
presented in Section V. Lastly, a discussion and conclusion
are presented in Section VI.

II. QUANTILE REGRESSION

A widely applied and effective method to generate prob
abilistic solar forecasts is Quantile Regression (QR) [10],
[11]. QR is a nonparametric forecast approach, which entails
that it does not assume any particular probability distribution.
Similar to linear regression, QR establishes a linear relation
between the predictor variables and the expected output. In
QR, these parameters are learned separately for each percentile
T by minimizing the sum of the absolute residuals over the
asymmetrically applied weights error [12]. Subsequently, a
probabilistic forecast is created by combining the estimates
of each percentile. QR is described as:

Yt(T) = f30(T) + f31(T)Xl,t + ... + f3mxm,t, (1)

where Y is the expected PV power production per percentile,
f3 are the regression coefficients per variable x, m is number
of predictor variables included and t presents each 15-minute
timestamp in 2016.

A. Data input
PV data is collected for a rooftop PV system located in the

city of Utrecht, the Netherlands. The PV system has a rated
capacity of 2,200 Wp, is oriented south (180°) with a tilt angle
of 38°. PV power production measurements are available with
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III. SYSTEM DESIGN

Fig. 2. The mean continuous ranked probability score (eRPS) per time of
the day over the entire testing period, 2016.

C. Results

The PV power output forecasts for September 16,2016, are
depicted in Fig. 1. This figure shows the different forecasted
percentiles, as well as the actual measurements. Over the entire
test period, i.e. 2016, an average CRPS of 0.049 kWlkWp
is found. Fig. 2 shows how the CRPS varies during the
day. The highest error values are found during noon, where
CRPS values of almost 0.14 kW per kWp are observed. This
coincides with those moments where the greatest uncertainty
occurs in the expected PV power production.
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(4)

The aggregator makes sure that no transformer conges
tion occurs when considering both the upper and the
lower limit of the range in probabilistic forecasts of the
transformer load communicated by the DSO;

4) At real-time operation, grid congestion could occur
when the actual transformer load is outside the range
in load forecasts that the aggregator had to consider.

The analyses in this work only consider forecasts in PV
generation.

where Cch is the electricity cost function for EV charging
for the considered LV grid and T represents the end of the
assessment timeframe.

The electricity cost function for EV charging considers the
charging power for the set of charging transactions n E N
at the EV battery for each timestep t (Pch n t), the charging
efficiency (llch), the duration of one time~t~p (,0"t) and the
ToU-tariffs at each timestep (C t ):

N 1
Cch,t = Ct LC;~-Pch,n,t),0"t Vt.

n=l 'Ich

B. EY charging model

The charging behavior of EVs in this study is simulated
using an optimization model in which EVs cost-optimize
their charging demand, while the transformer capacity is
not violated for both the upper and the lower limit of the
probabilistic forecast of the grid load.

a) Objective function:
EVs aim to minimize their charging costs:

T

minimize L Cch,t,
t=l

205 10 15
Hour of the day (UTC)

0.18

0.16

0.14

lr 0.12c::
u
"0 0.10
Q)

~ 0.08
VI8 0.06

0.04

0.02

0.00
o

b) EY charging constraints:
The EV charging power is bounded by the maximum EV

charging power of the specific charging transaction (Pch,max):

where ech,acc,td,n,n is the accumulated charging energy of a
charging transaction at td,n and Ereq,n is the charging demand
of charging transaction n.

The accumulated charging energy of a charging transaction
is updated as follows:

0::; Pch n t ::; Pch,max,n Vt E {ta,n, ta,n + ,1t, ... , td,n}, n,
, , (5)

where ta,n and td,n are the arrival and departure time of
charging transaction n respectively.

In addition, the following constraint was added to assure
that the charging demand of the charging transaction is met at
the moment of departure:

A. System architecture

This research considers a system in which EVs mitigate
transformer congestion problems in LV grids. Each considered
LV grid connects different grid loads, including EV charging
stations and PV systems, and is connected to the MV grid
through a transformer. EVs cost-optimize their charging de
mand considering Time-of-Use (ToU) tariffs, while preventing
that the power flows through the transformer exceed the
transformer capacity by considering forecasts of the total grid
load. The steps of the proposed system can be outlined as
follows:

1) The DSO generates quantile regression forecasts for the
transformer load for every timestep;

2) The DSO communicates these forecasts to the aggre
gator, which is responsible for the EV charging in the
proposed system. These forecasts should be commu
nicated well-before the closure time of the electricity
markets. The DSO also communicates the range in the
probabilistic forecast that aggregators should consider
when determining the EV charging schedules;

3) The aggregator cost-optimizes the forecasted EV charg
ing demand and submits bids to the electricity market.

ech,acc,td,n,n = Ereq,n Vn,

ech,acc,t,n = 0 Vt E {ta,n},n,

ech,acc,t,n = ech,acc,t-~t,n + Pch,t,n,1t
Vt E {ta,n + ,1t, ta,n + 2,1t, ... , td,n}, n.

(6)

(7)

(8)
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N 1
Ptrans ub t = Pres,t - PPV,lb,t + L -Pch t n Vt, (9b)

, , n= 1 11 ch "

N 1
Ptrans lb t = Pres,t - PPV,ub,t +L -Pch t n Vt, (9a)

, , n=l 11ch "

N 1
Ptrans actual t = Pres,t - PPV,actual,t + L -Pch t n Vt. (11)

, , n= 1 11 ch "

c) Grid constraints:
The lower and the upper bound of the forecasted transformer

load can be defined as follows:

A. Grid load analysis
Figs. 3 and 4 provide insight in the effectiveness of the

proposed system in avoiding grid congestion when considering
PV generation forecasts. Grid congestion can be caused by PV
generation forecasting errors. These figures present the number
of hours of grid congestion in the studied grid with different
installed PV capacities, EV adoption rates and considered
percentiles of the PV generation forecast in EV scheduling.

Fig. 3 shows that considering probabilistic day-ahead fore
casts of PV generation in the charging schedules optimization
process leads to significant reductions in grid congestion. If
EVs were allowed to charge freely without considering fore
casts in PV generation, a 100% EV adoption would lead to 475
to 490 hours of transformer congestion per year, depending on
the installed PV capacity. In contrast, the maximum number
of hours with grid congestion is 61 if EVs consider grid
congestion when determining their charging schedules.

C. Scenario overview & model simulation
This study considers different EV adoption rates, installed

PV capacities, transformer capacities and upper limits of
probabilistic PV generation forecasts that aggregators should
consider, in order to get broader insight in the usability of
probabilistic PV generation forecast for grid management. The
study considers EV adoption rates of 25%, 50%, 75% and
100% and total installed PV capacities of 100, 200, 300 and
400 kWp.

This analysis considers different upper limits for the PV
generation forecasts that should be considered by the aggre
gators to identify its impact on transformer congestion levels
and EV charging costs. Since the considered PV capacities
are too low to induce transformer congestion by excess feed
in of electricity to the grid, no lower limits in PV generation
forecasts are considered.

All optimizations are performed using the Gurobi optimiza
tion package for Python, using a high performance computing
cluster. Day-ahead prices for the Netherlands in 2016 were
used as ToU-tariffs in the analysis. All simulations of charging
transactions and charging behavior were repeated five times, in
order to obtain insight in the variability of results. This study
used an charging efficiency (l1ch) of ylO.87 [21].

V. RESULTS

where EEV,total,s is the expected annual charging demand in
the considered grid for scenario s, EEV,total,lOO% is the expected
annual charging demand in the considered grid with 100% EV
adoption and <Ps is the EV adoption rate in scenario s. This
study used a value of 795 MWh for EEV,total,lOO%,s, based on
an average car mileage of 13,000 km in the Netherlands [19],
a car possession rate of 0.9 cars/household [20] and a driving
efficiency of 0.2 kWhlkm.

Charging transaction data for 1 January 2019 until 12 March
2020 from 277 charging stations with two charging sockets in
residential areas in the province of Utrecht, the Netherlands
was also used as an input in simulating the future charging
transactions.

(12)EEV,total,s = EEV,total,lOOO/O<Ps,

C. Evaluation
This study analyses the effectiveness of the proposed system

in mitigating transformer congestion problems by considering
the actual transformer load Ptrans actual t' which is based on the
actual PV generation PPV,actual,t: ' ,

IV. DATA INPUTS & MODEL SIMULATIONS

A. Case study

A 400 kVA transformer feeding a LV grid with 340 resi
dential grid connections in the city of Utrecht, the Netherlands
is used as a case study. Residential load profiles in this grid
have been created by applying the total annual electricity
consumption of all households in this grid to standardized
NEDU profiles [17].

B. EV data

Future sets of EV charging transactions were generated
using a probabilistic model outlined in [18]. The two inputs
required for this probabilistic model are the total expected
annual charging demand in one LV grid and distributions in the
arrival time, connection time to the charging station, charging
volume and charging power of EV charging transactions.

This study considers different adoption scenarios of EVs.
The expected annual charging demand, which is used as an
input in the probabilistic model for generating the charging
transactions, is determined as follows:

-Ptrans,max ::; Ptrans,lb,t ::; Ptrans,max Vt. (lOa)

-Ptrans,max ::; Ptrans,ub,t ::; Ptrans,max Vt. (lOb)

where Ptrans,lb and Ptrans,ub are the lower and the upper bound
of the forecasted transformer load, respectively, Pres,t is the
residential load in the studied LV grid and PPV,ub,t and PPV,lb,t
are the upper bound and lower bound of the forecasted PV
generation in the studied LV grid, respectively. Note that the
lower bound of the forecasted transformer load depends on
the upper bound in PV generation forecasts, as PV generation
reduces the absolute transformer load.

The optimization model makes sure that both the lower and
the upper bound of the forecasted transformer load do not
exceeded the transformer capacity:
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Fig. 4. Average number of hours of transformer congestion when using the proposed system, considering different installed PV capacities, different EV
adoption rates and different percentiles in the quantile regression PV generation forecasts that are used as upper bounds in the optimization algorithm.

A detailed analysis of the effect of the considered percentile
in the PV generation forecast on grid congestion levels is
provided in Fig. 4. Using higher percentiles of the quantile
regression forecast for PV generation in the scheduling of
EVs results in more grid congestion. Using a higher percentile
increases the chance that the forecast overestimates the PV
generation, and thus increases the risk that the forecasted
available grid capacity for EV charging is higher than the
actual available grid capacity.

The number of hours with grid congestion decreases with
higher EV adoption rates and higher total installed PV ca
pacities in the considered LV grid. Transformer congestion
levels when EVs do not consider grid constraints in their
charging optimization reduces from a maximum value of 490
hours/year with a 100% EV adoption rate to a maximum value
of 9 hours/year with a 50% EV adoption rate. No transformer
congestion occurs with a 25% EV adoption rate. With higher
installed PV capacities, EVs are in less cases constrained by

TABLE I
INCREASE IN CHARGING COSTS WITH A 100% EV ADOPTION COMPARED

TO THE CASE IN WHICH EVs DO NOT HAVE TO CONSIDER GRID
CONSTRAINTS IN THEIR CHARGING OPTIMIZATION (0.0271 EURO/KWH).

Considered percentile of PV forecast in EV scheduling
Installed PV 1% 20% 40% 60% 99%capacity
100 kWp 0.353% 0.350% 0.347% 0.346% 0.339%
200 kWp 0.352% 0.346% 0.343% 0.341% 0.334%
300 kWp 0.351% 0.344% 0.340% 0.339% 0.331%
400 kWp 0.351% 0.342% 0.338% 0.337% 0.329%

the forecasted transformer capacity in their charging, as higher
PV generation results in higher reductions in transformer load.
Consequently, an overestimation in PV generation results in
less cases in a violation of the transformer capacity.

B. Charging cost analysis

The charging costs of EVs are higher if grid constraints
are considered in their charging optimization, as EVs can be
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restricted by the grid capacity to charge at moments with low
ToU-tariffs. Table I presents the increase in EV charging costs
compared to a situation in which EVs do not consider grid
constraints. It indicates that EV charging costs only increase
marginally when EVs consider grid load forecasts in their
charging schedules. The maximum increase in charging costs
equals 0.35%, corresponding to less than 0.0001 eurolkWh.

Considering higher percentiles of the PV generation forecast
lowers charging costs, as the forecasted available transformer
capacity for EV charging is higher with higher considered
percentiles. Hence, EVs have more opportunities to charge at
moments with low ToU-tariffs without being restricted by the
transformer capacity. The difference in charging costs between
the I% and the 99% percentile is limited; the charging costs
of the 99% percentile are at maximum 0.022% lower.

VI. DISCUSSION & CONCLUSION

This study proposed a framework for using EV smart
charging for the mitigation of grid congestion while con
sidering probabilistic day-ahead forecasts of the grid load.
The effectiveness of the proposed system was tested by using
quantile regression forecasts of PV generation.

The results affirmed that considering day-ahead PV gen
eration forecasts when scheduling EVs is effective in avoid
ing transformer congestion problems. The number of hours
with transformer congestion decreases drastically when EVs
consider grid load forecasts when scheduling their EVs; the
number of hours with grid congestion are reduced by at least
87% at 100% EV adoption. Considering a higher percentile
in PV generation increases the number of hours with grid
congestion, but marginally decreases EV charging costs.

Although the results indicated that little transformer conges
tion occurs when scheduling EVs using day-ahead forecasts,
this does not mean that day-ahead forecasts of transformer
loads can be applied in practice. This study only considered
forecasts in PV generation, but assumed perfect foresight for
other grid loads. At residential areas, most EVs arrive in the
beginning of the evening at the charging station, and the most
beneficial electricity prices for this set of EVs usually occur in
the middle of the night, at moments with low demand. Thus,
the highest charging volumes occur at moments with no PV
generation. Since perfect foresight has been assumed for all
other loads, no grid congestion can occur at these moments.
If the uncertainty in other loads was considered, forecasting
errors for these loads could increase the number of hours with
transformer congestion.

Lastly, this research only considered day-ahead forecasts,
while the forecasting accuracy improves when using forecasts
closure to real-time operation. The proposed system can be ex
tended by updating the day-ahead forecasts with shorter-term
forecasts, reducing the number of hours with grid congestion.
Aggregators can correct for these updated forecasts by trading
in intraday markets.
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