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H I G H L I G H T S

• A system perspective on cost and emission tradeoff of electric vehicle (EV) charging.

• A multi-objective optimization method of EV smart charging and vehicle-to-grid (V2G).

• Costs and CO2 emissions of EV smart charging and V2G can be reduced simultaneously.

• Smart charging can mitigate grid congestion problems in case of high EV penetration.

• Cost and emissions of grid reinforcement outweigh benefits of increased flexibility.
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A B S T R A C T

With high electric vehicle (EV) adoption, optimization of the charging process of EVs is becoming increasingly
important. Although the CO2 emission impact of EVs is heavily dependent on the generation mix at the moment
of charging, emission minimization of EV charging receives limited attention. Generally, studies neglect the fact
that cost and emission savings potential for EV charging can be constrained by the capacity limits of the low-
voltage (LV) grid. Grid reinforcements provide EVs more freedom in minimizing charging costs and/or emis-
sions, but also result in additional costs and emissions due to reinforcement of the grid. The first aim of this study
is to present the trade-off between cost and emission minimization of EV charging. Second, to compare the costs
and emissions of grid reinforcements with the potential cost and emission benefits of EV charging with grid
reinforcements. This study proposes a method for multi-objective optimization of EV charging costs and/or
emissions at low computational costs by aggregating individual EV batteries characteristics in a single EV
charging model, considering vehicle-to-grid (V2G), EV battery degradation and the transformer capacity. The
proposed method is applied to a case study grid in Utrecht, the Netherlands, using highly-detailed EV charging
transaction data as input. The results of the analysis indicate that even when considering the current transformer
capacity, cost savings up to 32.4% compared to uncontrolled EV charging are possible when using V2G. Emission
minimization can reduce emissions by 23.6% while simultaneously reducing EV charging costs by 13.2%. This
study also shows that in most cases, the extra cost or emission benefits of EV charging under a higher transformer
capacity limit do not outweigh the cost and emissions for upgrading that transformer.

1. Introduction

With the substantial increase in electric vehicle (EV) charging
transactions in low-voltage (LV) grids, optimization of the EV charging

process receives growing attention. Currently, most EVs charge in an
uncontrolled manner; the EV starts charging directly after connecting to
the charging station, until its charging requirement is met. This char-
ging strategy is generally regarded as undesirable, as a large share of
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the EVs start charging in the evening hours [1,2]. This causes the EV
demand peak to coincide with the evening electricity demand peak of
households, inducing grid congestion and power quality problems
[3,4]. In addition, uncontrolled charging is not always efficient from a
financial and/or CO2 emission perspective.

In the majority of charging transactions, the EV connection time to
the charging station largely exceeds the required time to meet its
charging demand [1,5]. This provides the opportunity to optimize the
EV charging process by shifting EV charging over time. This process is
frequently referred to as smart charging, coordinated charging or con-
trolled charging. Smart charging algorithms have been proposed for a
wide range of objectives. The majority of the proposed charging algo-
rithms perform economic optimization of EV charging [6,7]; these al-
gorithms aim to minimize the charging costs of EV owner or ag-
gregators in case of unidirectional charging, or to maximize their
economic benefits using vehicle-to-grid (V2G) technology. Other pro-
posed EV smart charging algorithms aim to minimize CO2 emissions
[8], maximize self-consumption of photovoltaic (PV) solar energy [9] or
mitigate congestion and power quality problems in LV grids [10,11].
These research activities were followed by actual implementation and
testing of smart charging algorithms in real-life environments [12,13].

Numerous business case analyses have demonstrated the economic

attractiveness of smart charging in different electricity markets, with
potential financial benefits ranging from 106 €/year to 1008 €/year per
EV [14,15]. Despite previous research having illustrated that the spe-
cific hourly electricity generation mix is an important moderator of the
CO2 emission impact of EVs [16], emission minimization through smart
charging and V2G has only been addressed in a limited number of
studies. Some of these studies operationalize this by minimizing the
electricity imported from the grid [17,18]. The limitation of this ap-
proach is that it fails to recognize that the emission factor of the elec-
tricity generation mix also shows large fluctuations over time, de-
pending on the actual dispatch of e.g. renewables, coal- and gas-fired
power plants [19]. Others translate emissions to costs and subsequently
minimize on these adapted cost functions [20,21]. This eliminates the
possibility to do a pure emission-based optimization, and it therefore
underestimates the mitigation potential of smart charging and V2G. The
limitations of these previous studies can be addressed by constructing
emission profiles which can be used as input in the emission optimi-
zation process [22,23]. To the best of our knowledge, only Zakar-
iazadeh et al. [24] and Hoehne et al. [8] have applied this approach to
smart charging or V2G. However, both studies only consider a short
timescale and neglect day-to-day variations in emissions. Battery de-
gradation is also not considered in both studies, while this can have

Nomenclature

Abbreviations

aFRR automatic frequency restoration reserves
BRP balance responsible party
DA day-ahead
DSO distribution system operator
ENTSO-E European Network of Transmission System Operators
EV electric vehicle
LV low-voltage
MV medium-voltage
OPF optimal power flow
PV photovoltaic
ToU time-of-use
TSO transmission system operator
V2G vehicle-to-grid

EV charging model

Indices and sets
Kk bins in the range of emissions
Ss subsets of EV charging transactions
Tt timesteps in the assessment periodParameters

ch EV charging efficiency
disch EV discharging efficiency
c electricity price
g electricity emission factor

t duration of one timestep
Ech,min minimum accumulated charging energy
Ech,max maximum accumulated charging energy
Pch,max maximum charging power
Pdisch,max maximum discharging power
PPV PV generation
Pres residential load
Ptr,max transformer capacity

maximum emissions
Cbatt battery investment costs
Gbatt battery production emissionsVariables
Cbattdeg battery degradation costs
Cel electricity costs

Cgrid annualized grid reinforcement costs
Csystem system costs
Gbattdeg battery degradation emissions
Gel electricity emissions
Ggrid annualized grid reinforcement emissions
Gsystem system emissions
Pch charging power
Pdisch discharging power
P tgrid, power withdrawn from (+) or injected to (−) the grid
Ech accumulated charging energy

Battery degradation model

cycle depth of an EV battery system
( ) battery degradation function

b No. of full equivalent cycles under 100% cycle depth
m parameter shaping the battery degradation curve
Neol,actual No. of actual cycles until end of life
Neol,full No. of full equivalent cycles until end of life

Economic parameters

Ctrans costs for upgrading a transformer
Ccable costs for reinforcing one km of electricity cable
Gtrans emissions for upgrading a transformer
Gcable emissions for reinforcing one km of electricity cables
lcable cable length in investigated grid
r discount rate
L lifetime of transformer and grid

Appendix

Jj set of generation technologies
Pgen generation volume
Pgen,CBS annual generation from CBS
Pgen,Transparency generation in ENTSO-E Transparency Platform
Pgen,missing missing generation in ENTSO-E Trans. Platform
Pload,Powerstats load from ENTSO-E Powerstats
Mcorr share of missing generation assigned to a technology
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important implications for the Pareto frontier in battery multi-objective
optimization [23]. Furthermore, Hoehne et al. [8] do not determine the
trade-off between charging costs and emissions and only consider plug-
in hybrid EVs, while Zakariazadeh et al. [24] consider unrealistic syn-
thetic price and emission profiles which overestimate the variability in
emissions and prices by a factor of 10 [19,25].

A second gap identified in scientific literature is the limited atten-
tion of the potential adverse impact of smart charging and V2G on grid
congestion. Increasing grid congestion induced by EV charging can
occur when a large set of EVs charge simultaneously at moments with
low electricity costs or emissions. Distribution system operators (DSOs)
are required to accommodate the needs of all system users and requests
for new connections in the LV-grid [26], which could result in in-
creasing need for grid reinforcements in order to accommodate smart
charging and V2G. On the one hand, grid reinforcements cause that EVs
are less constrained by the grid capacity in minimizing costs and
emissions. On the other hand, grid reinforcements result in extra
emissions and socialized costs from manufacturing and installing grid
assets. This demonstrates the need to determine whether the economic
and environmental benefits of smart charging with a higher grid ca-
pacity limit outweigh the costs and emissions of grid reinforcements.

This study aims to address the two gaps in literature that were
identified above. First, the trade-off between cost and emission mini-
mization of EV charging is determined using multi-objective optimi-
zation framework. The second aim is to assess whether it is beneficial
from a cost and emission system perspective to reinforce the grid. To do
so, the multi-objective framework is used to compare the cost and
emission benefits of smart charging with a higher grid capacity limit
with the costs and emissions of grid reinforcements. The model uses a
method to model the aggregated charging pattern of a large set of EVs
at low computational time and considers EV battery degradation, V2G
and transformer limits. The model is tested by using an actual case
study grid for different EV adoption rates, PV adoption rates, emission
profiles and pricing schemes.

This paper is outlined as follows: Section 2 presents the system ar-
chitecture, discusses a method to model the aggregated charging pat-
tern of a large set of EVs at low computational time and provides the
multi-objective optimization problem formulation. Section 3 provides a
literature review on battery degradation experiments, determining the
empirical relationship between cycle depth and battery degradation.
Section 4 introduces the investigated case study and provides an
overview of the data inputs. Section 5 presents the multi-objective
optimization results, including a sensitivity analysis on the effect of
different critical parameters such as EV adoption rate, PV adoption rate
and V2G on the outcomes. Lastly, the discussion is presented in Section
6 and conclusions and suggestions for future research are presented in
Section 7.

2. Methods

2.1. System architecture

Fig. 1 shows the system architecture of this study. The system
boundaries contain a single LV grid, which connects a number of
households, PV systems and EV charging stations. Because this research
focuses on the cost and emissions from a system perspective, we assume
one central operator that controls all loads. In the assessment time-
frame, a set of EV charging transactions is conducted at the EV charging
stations in the investigated LV grid. The central operator ensures the
power flows through the Medium Voltage (MV)/LV transformer remain
within the transformer limits, the residential load is satisfied and the
charging needs of the EVs are met. EV demand is assumed to be the only
shiftable load and furthermore EVs are able to feed electricity into the
grid (i.e., V2G). The central operator can control the charging and
discharging of the EVs to optimize economic and/or environmental
objectives. This study assumes perfect foresight in residential load, PV

generation, time-of-use (ToU) tariffs, emission profiles and EV avail-
ability.

2.2. System costs and system emissions

A transformer upgrade and/or cable reinforcements provide EV fleet
operators with more freedom in minimizing EV charging costs and/or
emissions without being constrained by the grid capacity. However, to
evaluate whether transformer or grid reinforcements are desirable from
a system perspective, costs and emissions from the production and in-
stallation of a transformer and electricity cables should also be taken
into account. Costs and emissions associated with battery degradation
should also be considered to account for the potential extra battery
degradation with V2G compared to unidirectional charging. System
costs and emissions are defined in Eqs. (1a) and (1b) as follows:

= + +C C C C ,system el battdeg grid (1a)

= + +G G G G ,system el battdeg grid (1b)

where Csystem and Gsystem are respectively the annual system costs and
emissions,Cel andGel are the total annual electricity costs and emissions
for the whole LV grid, Cbattdeg and Gbattdeg are the total annual costs and
emissions resulting from EV battery degradation and Cgrid and Ggrid are
the annualized costs and emissions from grid reinforcements.

Grid reinforcement costs Cgrid and emissions Ggrid are annualized by
using Eqs. (2a) and (2b):

= +
+

C C l C r
r

( )
(1 (1 ) )Lgrid

trans cable cable

(2a)

= +G G l G
L

,grid
trans cable cable

(2b)

where Ctrans and Gtrans represent the total costs and emissions of pro-
ducing and replacing a transformer, Ccable and Gcable represent respec-
tively the costs and emissions for reinforcing one kilometer of cable,
lcable represents the total cable length that is reinforced and L represents
the assumed lifetime of the grid, assuming that the transformer and the
cables have the same lifetime. Grid reinforcement costs are discounted
to consider the time value for money; r represents the discount rate.

2.3. Modelling aggregated EV charging patterns

Nearly all EV optimization models optimize the charging behavior
of individual EV transactions, since each charging transaction has its
unique plug-in time, plug-out time, charging requirement and max-
imum charging rate (e.g., [27,28]). With high EV penetration, optimi-
zation of individual EV transactions could result in a significant com-
putational burden, as each individual EV transaction adds a set of
variables to the optimization problem. This computational burden can
hinder policymakers and DSOs to perform techno-economic scenario

Fig. 1. The proposed system architecture.
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studies for a long time horizon and for a large number of case-specific
grids, considering a large number of parameters.

A study by Tang et al. [29] has proposed a method to model the
aggregated charging behavior of a large pool of EVs in a LV grid at one
timestep as a single variable, inducing a considerable reduction in the
computational time. The method converts the required charging vo-
lume, maximum charging power, plug-in time and plug-out time of
individual EV charging transactions into an aggregated maximum
charging power (P tch,max, ), minimum accumulated charging energy
(E tch,min, ) and maximum accumulated charging energy (E tch,max, ) per
timestep for a set of charging transactions, as described in Table 1. This
method allows the charging behavior of this set of charging transactions
to be modelled as a single community battery with a variable (i.e., time-
dependent) battery capacity.

This study proposes two modifications to the methods of Tang et al.
[29]. First, this study proposes to model accumulated EV charging be-
havior as multiple community batteries with a variable battery capacity
instead of as a single community battery, since Tang et al.’s methods
can underestimate the costs or emissions of EV smart charging: The
maximum charging power P tch,max, is aggregated for multiple EV char-
ging transactions, which allows the model to meet the charging re-
quirement of individual charging transactions by charging with a
higher charging power than physically possible for an individual
charging transaction. This study proposes to divide the set of EV-
transactions into S subsets, where S …s S{1, 2, , }, in a chronological
order based on the plug-in time. Subsequently,
P P E, ,t s t s t sch,max, , disch,max, , ch,max, , and E t sch,min, , are determined for every
timestep and for every subset. The number of subsets S can be varied to
determine a balance between computational time and accuracy of the
model. Second, this study proposes to extend the method of Tang et al.
to V2G-systems by introducing a maximum discharging rate
(P t sdisch,max, , ) for the aggregated EV charging model. Table 1 discusses
the proposed methods for determining P t sdisch,max, , .

2.4. Multi-objective optimization model formulation

2.4.1. Objective functions and -constraint
A common approach to address a problem with multiple objectives

is to determine the Pareto frontier using the -constraint method [30].
Each optimization is first solved separately, calculating the two end-
points of the Pareto frontier. The cost and emission objective functions
are formulated in Eqs. (3a) and (3b):

+
=

C Cminimize ( ),
t

T

t t
1

el, battdeg,
(3a)

+
=

G Gminimize ( ),
t

T

t t
1

el, battdeg,
(3b)

whereCel represents the electricity costs,Cbattdeg the battery degradation
costs, Gel represents the CO2 emissions related to electricity consump-
tion and Gbattdeg the CO2 emissions related to battery degradation. Cel
and Gel can be determined according to Eqs. (4a) and (4b):

=C c P t t,t t tel, grid, (4a)

=G g P t t,t t tel, grid, (4b)

where at timestep t the ToU-tariff is represented by ct , the emissions
related to electricity consumption are represented by gt and the total
amount of electricity withdrawn from (+) or injected to (-) the MV-grid
is represented by P tgrid, .

Additional discharging and charging of an EV impacts the lifetime of
the EV battery caused by cyclic ageing [31,32]. Therefore, it is im-
portant to include battery degradation into the objective function, to
ensure batteries are only discharged and charged if the benefits exceed
the costs associated to battery degradation. If represents the cycle
depth of an EV battery system, then the battery degradation costsCbattdeg
and degradation emissions Gbattdeg at timestep t can be calculated using
Eqs. (5a) and (5b):

=
=

C C t( ) ,t
s

S

s tbattdeg, batt
1

,
(5a)

=
=

G G t( ) ,t
s

S

s tbattdeg, batt
1

,
(5b)

where Cbatt are the battery investment costs and Gbatt are the emissions
from producing a battery. The dimensionless degradation function

( )s t, is discussed in Section 3.
The minimum and maximum of the range in emissions are the

outcome of Eq. (3b), and the emissions associated to the optimal so-
lution found in Eq. (3a), respectively. Subsequently, the range in
emissions is divided into K equally spaced bins k, where

K …k K{1, 2, , }. The -constraint can now be formulated by treating
the emission function 3b as a constraint for each bin k, as in Eq. (6),
and running the problem using the cost objective:

+
=

G G( ) .
t

T

t t k
1

el, battdeg,
(6)

This approach allows to obtain the least-cost solution for a certain in-
tended reduction in emissions. Only the cost minimization runs of the
multi-objective optimization are subject to this constraint. The objec-
tive functions (3a) and (3b) are subject to various other constraints, as
discussed in the following sections.

2.4.2. Power balance constraint
The power balance constraint is formulated in Eq. (7):

= +
= =

P P P P P t1 ,t t t
s

S

s t
s

S

s tgrid, res, PV,
ch 1

ch, , disch
1

disch, ,
(7)

where P tres, and P tPV, represent the residential load and PV generation in
the investigated LV grid at timestep t. These are assumed to be non-
controllable. P s tch, , and P s tdisch, , represent, respectively, the charging and
discharging power at the EV battery of EV group s at timestep t and ch
and disch represent the EV charging and discharging efficiencies.

Table 1
Overview of parameters for optimizing the aggregated charging demand of EV transaction subset s, adapted based on Tang et al. [29].

E t sch,max, , The maximum accumulated charging energy at timestep t of EV set s is equal to the required charging energy of all EVs of transaction set s that connected to the grid
between =t 0 and t.

E t sch,min, , The minimum accumulated charging energy assures that the charging requirement of individual charging transactions is met before unplugging. E t sch,min, , is equal
to accumulated charging volume of all EVs in transaction set s that connected to the grid between =t 0 and t in the ’latest charging scenario’. The ‘latest charging’
scenario assumes that the charging schedule of an EV is delayed to the latest and that an EV charges at maximum charging power in the required number of
timesteps to meet its charging demand before unplugging.

P t sch,max, , The maximum charging power of EV set s at timestep t is equal to the maximum charging power of all EVs of EV transaction set s connected to the grid at timestep t.
P t sdisch,max, , The maximum discharging power of EV set s at timestep t is equal to the maximum discharging power of all EVs of EV transaction set s connected to the grid at

timestep t, excluding EVs that are charging in the latest charging scenario at timestep t. This avoids the model to discharge at maximum power one timestep before
an EV unplugs, resulting in unmet charging demand.
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2.4.3. Charging power constraints
The aggregated charging and discharging power of each subset of

EVs are constrained by a maximum charging and discharging power,
which are determined using the methods presented in Section 2.3:

P P t s0 , ,t s t sch, , ch,max, , (8)

P P t s0 , .t s t sdisch, , disch,max, , (9)

2.4.4. Accumulated charging energy constraints
To model the charging behavior of a group of EVs as a single

community battery, the accumulated charging energy is constrained by
a minimum and maximum accumulated charging energy, as discussed
in Section 2.3:

E E E t s, ,t s t s t sch,min, , ch, , ch,max, , (10)

where E t sch, , is a variable that represents the accumulated charging
energy of EV group s at timestep t. E t sch, , is based on the accumulated
charging energy in the previous timestep and the charging and dis-
charging power at timestep t:

= =E t s0 for 1, .t sch, , (11)

= + …E E P P t t T s( ) {2 }, .t s t s t s t sch, , ch, 1, ch, , disch, , (12)

2.4.5. Transformer capacity constraint
To avoid transformer overloading, P tgrid, is constrained by the

transformer capacity (Ptr,max) at every timestep t, as formulated in Eq.
(13):

P P P t.ttr,max grid, tr,max (13)

Since residential load and PV generation are assumed to be non-con-
trollable in this study, only EV charging behavior is altered to meet this
constraint.

3. Battery degradation

Wöhler curves, or Stress – Number of cycles curves (S-N curves), are
often used to predict material fracture under cycle loading [33]. This
relation can also be applied to cyclic battery degradation [34]. Doing
this, the relation between number of full equivalent cycles until end of
life Neol,full and cycle depth takes the following general form:

=N b .m
eol,full (14)

By default, parameter b reflects the number of cycles under cycle depth
of 100% (i.e., = 1), whereas battery degradation parameter m de-
termines the specific shape of the curve. To obtain the number of actual
cycles Neol,actual until end of life, one needs to correct for the actual cycle
depth:

= =N b b .
m

m
eol,actual

1
(15)

The degradation per cycle of the battery is the inverse of Neol,actual.
Considering half cycles instead of full cycles, this can be translated to
the dimensionless degradation function ( )s t, :

= =
b N

( ) 0.5 0.5 .s t m, 1
eol,actual (16)

Note, as this function is non-linear, Eqs. (5a), (5b) and (6) are treated as
piecewise linear functions in the optimization model by using four
segments.

A literature review was performed to determine appropriate values
for the parameters b and m for lithium-ion EV batteries. Fig. 2 shows the
results of seven different studies; all studies comply to the general form
presented in Eq. (14), with the R2 for each individual study ranging
from 0.92 to 1.00. For every cycle depth that was researched by more
than four studies, the average value of Neol,actual was taken. A trendline

with the form of Eq. (14) was fitted using the MATLAB curve fitting
toolbox; values of b and m were determined at 4084 (± 367; 95%
confidence) and −0.7514 (± 0.0324), respectively, with an adjusted R2

of 0.997. These values are used as battery degradation parameters in
this study.

4. Data inputs

4.1. Case study specifications

This research considers an LV grid in a residential area in the
Lombok district in Utrecht (the Netherlands) as a case study grid. This
part of the distribution grid is used as a living lab in the Smart Solar
Charging research project [12] to determine the impact of EV charging
and PV generation on LV grids. For this research project, EV charging
transaction data is logged from 26 EV charging stations and the PV
generation from three PV systems is logged on a 5-min basis.

The investigated grid has a radial outline and is connected to the
MV grid through a 400 kVA transformer. The total cable length equals
3.3 km, divided over 19 feeder lines. Most cables in the grid are made
out of copper, with cross-sectional areas ranging from 25 to 95 mm2, as
described in [40]. The total electricity demand in this grid equaled
1251 MWh in 2017.

The transformer capacity in this grid can be upgraded to 630 kVA.
This study will compare the system costs and system emissions with and
without transformer upgrades.

4.2. EV charging transactions

The analyses in this study are performed for different EV adoption
rates, as depicted in Table 2. Future sets of EV charging transactions are
generated to reflect high EV adoption rates, using the methods de-
scribed in [5] and using two years of logged EV charging data from the
investigated grid. The different EV adoption rates in Table 2 represent
the share of EVs in total number of cars possessed by households con-
nected to the investigated grid, considering the current car possession
rate of 0.4 car/household in the Lombok district [41]. Table 2 makes a
distinction between local EVs and other EVs (e.g., visiting EVs), using
the classification method in [5]. It is assumed that all electric vehicles
in the future are battery electric vehicles (BEVs) and that the ratio
between local EVs and other EVs is the same as in the logged EV data.

Fig. 2. Cycle depth versus number of full equivalent cycles. Data from
[32,35–39]. Trendline is an exponential fit of the averages of the studies; the
95% CI is the confidence interval of the mean for every cycle depth.
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4.3. Grid reinforcement costs and emissions

Table 3 shows general values for the costs and emissions of grid
reinforcements used in economic and environmental assessments about
grid reinforcements. In this study, we consider both scenarios with only
transformer upgrades and scenarios in which 25%, 50%, 75% and
100% of the cables in the grid are reinforced. Table 4 presents the
annualized reinforcement costs and emissions for each considered
scenario, which are based on Eqs. (2a) and (2b).

4.4. Emission profiles and other data input

Table 5 provides an overview of the data inputs used in this study.
The emission profiles form an important input for this study. Two dif-
ferent profiles are composed for the Netherlands in 2018: an average
emission profile and a marginal emission profile. These are constructed
according to the methods presented in [16,19]; more details can be
found in Appendix A. Average emission profiles are constructed by
taking the weighted average emission factors of all electricity gen-
erating technologies in a certain time frame (15 min in this study). This
makes them especially suitable for CO2 accounting purposes. Marginal
emission profiles take the emission factor of one specific power plant,
namely the one that is the price-setting unit in a certain time frame
(typically one hour). An increase or decrease of demand leads to altered
electricity generation of this power plant, which makes these profiles
very suitable to determine the emission impact of charging optimiza-
tion [46].

The assessment time horizon equals one year. To limit the compu-
tational burden of the simulation, the EV charging optimization is split
into individual months, which are subsequently combined to obtain the
annual total electricity and battery costs. The simulation of each month
also considers the EV charging transactions starting in the five days
before the start of the month to assure that a representative number of
EVs is charging at the beginning of the month. In addition, five days
after the last day of the month are considered in each monthly opti-
mization to allow EVs to finish their charging transaction. Battery de-
gradation was only considered in simulations with V2G functions, as
V2G can increase battery degradation compared to unidirectional EV
charging. The number of EV subsets S equalled 50 for 25% EV adoption,
150 for 50% EV adoption, 200 for 75% EV adoption and 250 for 100%
EV adoption, based on Section 5.3. Simulation was performed in Python
[47] with the Gurobi [48] solver, using a laptop equipped with an Intel
i7-5600U processor and a 16 GB RAM.

5. Results

5.1. Multi-objective optimization results

The Pareto frontier showing the trade-off between cost minimiza-
tion and emission minimization for EV charging is presented in Fig. 3.
This figure shows the trade-off for both marginal and average emissions
and identifies the impact of a transformer upgrade from 400 kVA to 630
kVA on system costs and emissions.

5.1.1. Unidirectional charging
Fig. 3 indicates that cost minimization of unidirectional EV charging

with a 400 kVA transformer results in a reduction of charging costs of
22.7% compared to uncontrolled charging. Emission minimization of
EV charging with a 400 kVA transformer can reduce charging emissions
by 8.0% when considering average emission profiles and by 23.6%
when considering marginal emission profiles. Even with 100% emission
minimization of EV charging, costs are reduced by 7.8% compared to
uncontrolled charging when considering average emission profiles and
by 13.2% when using marginal emission profiles.

Marginal emission profiles show a larger spread in emissions com-
pared to average emission profiles (standard deviations in 2018 of
0.190 kg CO2eq/kWh and 0.045 kg CO2eq/kWh respectively, see also
Figs. A1 and A2 in Appendix A), as a change in marginal power plant
(e.g., from a coal- to a gas-fired power plant) has a direct substantial
impact on the marginal emission factor. The impact of a different
marginal power plant on the average emission factor is limited, since a
large share of the total emissions are determined by relatively constant
baseload generation.

Fig. 3 indicates that the increase in costs when shifting from cost
minimization to emission minimization is higher when using average
emissions profiles than when using marginal emission profiles. An ex-
planation can be found in the input data: the lowest values of marginal
emission factors coincide with lower prices than the lowest values of
average emission factors. The lowest marginal emission factors are
found in hours in which the most efficient gas-fired power plant is
marginal; this implies a relatively low residual electricity demand, and
thus relatively low prices.

Overall, the CO2-abatement costs2 when shifting from cost-based
optimization to emission-based optimization range from 2.8 to 22.6

Table 2
Details of the sets of EV transactions used.

EV adoption No. EVs charging per
year

No. charging
transactions per year

EV charging
volume per year

Local Other

25% 34 916 7339 132 MWh
50% 68 1832 14464 257 MWh
75% 102 2749 20778 372 MWh
100% 136 3665 28355 506 MWh

Table 3
Overview of parameter values used in this study for determining
annualized grid reinforcement costs and emissions.

Ctrans (630 kVA) €15,000 [42]
Ccable 120,000 €/km [42]
Gtrans (630 kVA) 136.3 tCO2eqa [43]
Gcable 12.5 tCO2eq/kmb [44]
r 3% [42]
L 40 years [42]
lcable 3.3 km

a Jorge et al. [43] determined the life-cycle emissions for a 315
kVA transformer. This has been scaled to a 630 kVA transformer
by using a scale factor of 0.8 [45]. Emissions from transformer
losses were not considered, assuming that a transformer upgrade
of 400 to 630 kVA does not result in additional transformer
losses.

b This study assumes that underground copper cables are re-
placed with aluminum cables. The emissions from the production
and installation of an aluminum cable are combined with the end-
of-life emission benefits of copper cables.

Table 4
Overview of annualized grid reinforcement costs and emissions with different
shares of cable reinforcements.

% of cables reinforced Annualized costs Annualized emissions

0% 649 €/year 3.41 t CO2eq/year
25% 4955 €/year 3.67 t CO2eq/year
50% 9262 €/year 3.93 t CO2eq/year
75% 13568 €/year 4.19 t CO2eq/year
100% 17225 €/year 4.44 t CO2eq/year

2 CO2-abatement costs are calculated by dividing the increase in system costs
when shifting from cost minimization towards a partly emission-based charging
optimization by the decrease in system emissions when making this shift.
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€/tCO2eq with increasing levels of emission abatement when con-
sidering marginal emission profiles with a 400 kVA transformer. The
CO2-abatement costs range from 21.8 to 310.6 €/tCO2eq when con-
sidering average emission profiles.

5.1.2. V2G
V2G functions allow for a larger reduction in charging costs and

emissions, as EVs can inject electricity to the grid at moments with high
costs or emissions. Fig. 3 shows that the cost reduction potential of V2G
compared to uncontrolled charging equals 32.4%, whereas the emission
reduction potential equals 8.7% when using average emission profiles
and 67.3% when using marginal emission profiles. This emission re-
duction with V2G is most profound for marginal emission profiles due
to its high volatility in emissions. This high volatility causes that the
emission benefits of discharging exceed the extra battery degradation
emissions, resulting in high discharging volumes when minimizing
emissions with marginal emission profiles. This also explains why the
increase in EV charging costs with V2G is higher with marginal emis-
sion profiles when shifting from cost-based optimization to emission-

based optimization. EV discharging volumes are higher when opti-
mizing emissions using marginal emission profiles. This causes EVs to
inject electricity to the grid at moments with high emissions, corre-
sponding to low electricity prices, thus increasing the net charging costs
of EV charging. The CO2-abatement costs when shifting from cost-based
optimization to emission-based optimization range from 5.9 to 43.8
€/tCO2eq for marginal emissions and from 82.7 to 434.8 €/tCO2eq for
average emissions when considering V2G functions with a 400 kVA
transformer.

5.1.3. Impact of transformer upgrade
Comparing the Pareto frontiers corresponding to 400 kVA and 630

kVA transformers in Fig. 3 provides insight on the effect of a trans-
former upgrade on system costs and emissions. The results indicate that
EV charging costs and emissions are lower with a 630 kVA transformer
from the perspective of the central operator (i.e., when neglecting
transformer upgrading costs and emissions), since this Pareto frontier is
located below the 400 kVA Pareto frontier in all scenarios. A trans-
former upgrade causes that EVs are less constrained in their charging

Table 5
Overview of data inputs in this study.

PV-generation profiles Normalized 15-min data (kW/kWp) from three logged PV systems in the Lombok district in Utrecht, the Netherlands.
Residential load profiles Standardized household load profiles from NEDU [49] and the total annual electricity consumption of all grid connections in the investigated

grid in 2017.
Price data Day-ahead market prices in the Netherlands in 2018 in most runs. automatic Frequency Restoration Reserve (aFRR) imbalance prices in the

Netherlands in 2018 in Section 5.2.2
Emission profiles Average emission profiles are determined using the method in [19] and 15-min generation data in 2018 from the Netherlands from [25].

Marginal emission profiles are determined using the methods in [16] and Dutch day-ahead market prices in 2018. Specific assumptions can be
found in Appendix A.

,ch disch 0.87 [50]
t 15-min

Battery degradation parameters Parameters presented in Section 3.
Battery investment costs 130 €/kWh [51]
Battery production emissions 104 kg CO2eq/kWh [52]

Fig. 3. Pareto frontier for multi-objective optimization of costs and CO2-emissions of EV charging, considering average and marginal emission profiles and con-
sidering unidirectional charging (left) and V2G (right). Pareto frontiers are presented for an EV adoption rate of 100% and an installed PV capacity of 400 kWp.
Battery degradation costs and emissions are considered for all Pareto frontiers. For V2G, the costs and emissions are presented per net charged kWh (i.e., charging
volume minus discharging volume).
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behavior by the transformer capacity, providing more freedom to EVs in
minimizing their charging costs or emissions. However, Fig. 3 shows
that with unidirectional charging, a transformer upgrade is never
beneficial from a system perspective in terms of both costs and emis-
sions when also considering the costs and emissions for producing and
installing a transformer.

A transformer upgrade has a more pronounced impact on system
costs and emissions with V2G, since EVs are not only less frequently
constrained by the transformer capacity during charging, but also less
constrained during discharging. This allows EVs to inject more elec-
tricity to the grid at moments with beneficial prices and/or emissions.
With V2G, the Pareto frontiers corresponding to the transformer ca-
pacities of 400 and 630 kVA (including transformer upgrading costs and
emissions) intersect at EV charging emissions of 0.45 kg CO2eq/kWh.
This indicates that grid reinforcements are attractive from a system
perspective in the investigated case study when constraining the EV
charging emissions to 0.45 kg CO2eq/kWh or lower when EVs optimize
their charging schedule using V2G.

5.2. Sensitivity analysis on system impact of grid reinforcements

To provide better insights under what circumstances grid

reinforcements are beneficial from a system perspective, this section
elaborates on how the system impact of grid reinforcements changes
with different values for critical parameters, including the EV adoption
rate, installed PV capacity, selected pricing scheme and level of grid
reinforcement. These sensitivity analyses focus on the impact on system
costs, since most DSOs still base decisions for grid reinforcements on
financial grounds.

5.2.1. Impact of EV adoption rate and installed PV capacity
Fig. 4 presents a breakdown of the change in system costs with a

transformer upgrade from 400 kVA to 630 kVA for different EV adop-
tion rates and different installed PV capacities for both unidirectional
charging and V2G. Fig. 4 indicates that in all cases with both uni-
directional EV charging and V2G, the annualized investments outweigh
the reduction in EV charging costs due to a transformer upgrade, re-
sulting in an increase in system costs. An increase in total system costs
implies that from a system perspective, under the assumptions in this
study, it is not economically attractive to reinforce the grid to mitigate
congestion problems induced by EVs.

A transformer upgrade leads to a larger decrease in EV charging
costs with higher EV adoption rates. As a high EV load can cause
transformer overloading, the number of times that EVs are constrained

Fig. 4. Annualized transformer investments, change in EV charging costs and change in system costs with a transformer upgrade of 400 kVA to 630 kVA in the
investigated grid for different EV adoption rates and installed PV capacities with unidirectional charging (top) and bidirectional charging (bottom). No cable
reinforcements are considered in this figure.
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by the transformer capacity in charging at moments with low prices
increases with the number of EVs connected to the grid. Subsequently, a
transformer upgrade leads to a larger reduction in EV charging costs
with higher EV adoption rates.

The decrease in EV charging costs with a transformer upgrade is
lower with a higher installed PV capacity in the grid. PV generation
causes that less power withdrawal from the MV grid is required to fulfil
the electricity demand of EVs. As a consequence, EVs can meet a larger
share of their charging demand at moments with low electricity prices
without causing transformer overloading, thus a transformer upgrade
has a less pronounced effect on the EV charging costs.

5.2.2. Impact of selected pricing scheme
With increasing integration of renewables into the electricity

system, electricity prices could become more volatile. In addition, it is
unlikely that all EVs will be subject to the same price-incentives as
inputs in the optimization of their charging process, since EVs are op-
timized in the context of different (sub-) markets via the central op-
erator. To determine how these developments could affect the impact of
grid reinforcements on system costs, additional simulations were per-
formed in which different shares of the EV fleet used the more volatile
Dutch automatic Frequency Restoration Reserves (aFRR) prices in op-
timizing their charging schedule.

Fig. 5 indicates that the decrease in EV charging costs with grid
reinforcements outweighs the grid reinforcement investments when a
large number of EVs bases its charging schedule on aFRR prices, using
the scenario of 100% EV adoption with a 200 kWp installed PV capacity
in the considered LV grid. This highlights the major impact of the vo-
latility of the selected pricing scheme on the outcome of the analysis.
The effect is less pronounced with a low share of EVs using aFRR prices
to optimize their charging behavior compared to a situation where all
EVs use day-ahead market prices in their optimization process, as the
most beneficial prices for EV charging do not occur at the same mo-
ments for both pricing schemes. Consequentially, EV demand peaks are
better distributed over time, resulting in fewer moments in which the
charging demand is constrained by the transformer capacity.

5.2.3. Impact of level of grid reinforcement
Fig. 6 presents the change in system costs with different levels of

cable reinforcement for a situation where 100% of the EVs are opti-
mized based on the aFRR prices. This is the situation with the largest
decrease in EV charging costs with grid reinforcements. The annualized
grid investments rise sharply when grid reinforcements are required
next to a transformer upgrade, since cable reinforcements require costly
excavations. Even with high price volatility, grid reinforcements are not
beneficial from a system perspective if a large share of the cables in the
grid need to be reinforced.

5.3. Accuracy of EV community battery modelling method

Fig. 7 compares the computational time and objective outcome of
conventional methods for optimizing EV charging behavior (i.e.,
creating variables for every individual charging transactions) with the
computational time and objective outcome when using the methods
proposed in Section 2.3. The results indicate that when the aggregated
EV charging demand is optimized using one subset of EV charging
transactions, as proposed by Tang et al. [29], the annual EV charging
emissions are underestimated by 7.0% with a 100% EV adoption rate
when considering marginal emission profiles. The underestimation in
objective outcome equals 1.8% when optimizing using average emis-
sion profiles, 6.6% when optimizing using day-ahead prices and 12.5%
when optimizing using aFRR prices. Increasing the number of subsets
rapidly reduces this charging cost or emission estimation error, until
this error is completely eliminated. The computational running time
increases with a larger number of subsets, allowing users of the pro-
posed method to make a trade-off between computational time and

estimation error in results. Fig. 7 indicates that aggregated EV charging
demand can be optimized using a cost estimation error of 1% at a re-
lative computational time of below 20% compared to conventional EV
charging optimization methods. With lower EV adoption, a lower
number of subsets is required to eliminate the inaccuracy in optimizing
EV charging costs.

6. Discussion

This study presented Pareto frontiers to get insight in the trade-off
between cost-based optimization and emission-based optimization of
EV charging in an LV-grid under different transformer capacity limits. A
model was developed to be able to optimize EV charging for a large
group of EVs at lower computational cost compared to conventional EV
optimization models, without losing accuracy in results. The results
show that grid reinforcements to mitigate grid congestion caused by EV
charging are in most situations not beneficial from both a cost and
emission perspective; the additional costs and emissions in case of re-
inforcement outweigh the potential additional EV charging optimiza-
tion benefits that can be obtained as a result of the higher transformer
capacity. These results are robust for various future scenarios regarding
the penetration of PV and EVs, but not with much more volatile elec-
tricity prices. A second major finding was that even with the current
transformer limitations, the costs and emissions related to EV charging
can be decreased substantially. For example, emission-based charging
optimization can reduce charging marginal emissions by 23.6% com-
pared to uncontrolled EV charging, while also reducing the costs by
13.2%. With V2G, marginal emission savings of up to 67.3% are pos-
sible, while charging costs can be reduced by 32.4%.

These findings have important practical implications. For example,a
transition from internal combustion engine vehicles to EVs can have a
larger impact on emissions than often assumed - also on the short term.
This could help countries in attaining their climate goals. Many studies
consider the average generation mix to estimate the impact of this
transition, whereas this study shows that EVs are adept to be charged
with electricity that is less CO2 intensive than the average of a country’s
generation mix.

Further, it was shown that a high penetration of EVs is possible
under the current transformer limit for the investigated grid, and
moreover, the current transformer limit provides ample possibilities for
smart charging and V2G. In order for such a system to function, various
options exist. One option is that the DSO enforces central operators to
stay within the overall capacity limits, with the DSO as single buyer,
and the charging fleet operators providing ancillary services (e.g., see

Fig. 5. Annualized transformer investments, change in electricity costs and
change in electricity costs with a transformer upgrade of 400 kVA to 630 kVA in
the investigated grid for different shares of cars charging using aFRR and day-
ahead (DA) prices in optimizing their charging process. Results are presented
for an EV adoption rate of 100% and an installed PV capacity of 200 kWp.
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[53]). This option will require investments in communication infra-
structure.

Currently DSOs are legally obliged to accommodate the needs of all
system users [26], which could mean that charging fleet operators
should be financially compensated when they are constrained by the
grid capacity. It should be reconsidered whether this system can be
maintained in the future in grids with high EV adoption. An important
recommendation is to think of a new framework which allows for a
socially fair distribution of costs and benefits.

Two main categories of uncertainty should be considered when in-
terpreting the results: uncertainty in input data and uncertainty in
forecasting accuracy. One of the main sources of uncertainty in the
input data are the used emission profiles. To determine the marginal
emission profile, this study assumed marginal emissions are equal to the
emissions of the plant with marginal costs closest to day-ahead market

price. As discussed in [19], it is not always possible to determine the
actual marginal power plant. More accurate marginal emission profiles
can only be constructed if each balance responsible party (BRP) pub-
lishes the CO2 intensity of their scheduled generation based on the unit
commitment of their power plants. Given the large emission reduction
potential of EV charging when optimizing EV charging using marginal
emission factors, this study recommends countries or regions to publish
live marginal emission factors to facilitate adoption of emission-based
smart charging. These emission factors should be published in such a
way that market-sensitive information of electricity generating com-
panies is not revealed.

In addition, there is uncertainty regarding the future robustness of
the price input data. The trade-off between cost minimization and
emission minimization EV charging is heavily dependent on the CO2-
price. With higher CO2-prices, gas-fired power plants can become
cheaper than coal-fired power plants, resulting in a merit order with
alternating coal- and gas-fired power plants. A further increasing CO2-
price could make the trade-off between costs and emissions less severe,
as electricity can be shifted to times with low emissions for lower or low
additional costs. A last important notion in this context is the pene-
tration of renewables. Higher penetration of renewables leads to a
higher variation in emission profiles [16] and potentially leads to
higher price volatility, which would increase the width of the Pareto
frontiers.

This study assumed a perfect forecasting accuracy in PV generation,
residential load, electricity prices, electricity generation emission fac-
tors and EV availability when scheduling the charging behavior of EVs.
Although multiple studies have developed forecasting methods which
could be applied to LV grids, forecast errors could be relatively large,
especially since this study looks at a relatively small aggregation level
(a single LV grid). Due to these forecast errors, grid congestion pro-
blems cannot be fully eliminated, causing that real-time correction of
the charging schedule of EVs is required to mitigate risks on grid con-
gestion problems. In addition, due to these imperfect forecasts, EVs
might be charged more conservatively in practice to avoid grid con-
gestion or unmet EV charging demand requirements. Thus, the actual
potential of EVs to minimize costs or emissions may be lower than the
theoretical potential identified in this study.

Although this study has concluded that grid reinforcements are not
attractive in terms of cost and emissions from a system perspective
when the focus is on congestion problems caused by deep penetration of
EV charging in LV grids, our sensitivity analysis also suggested that this
could be different with more volatile prices. Furthermore, it should be
noted that the decision whether to reinforce the grid is based on mul-
tiple factors. Grid reinforcements are not only a solution to grid con-
gestion problems, but could also be necessary to mitigate power quality
problems [54]. Next to the large-scale integration of EVs, these pro-
blems could also be caused by i.a. greater penetration of variable re-
newable energy sources in the LV grid or electrification of space heating
and cooking in buildings.

7. Conclusion and future research

This research addressed the question whether grid reinforcements
are attractive from a cost or emission perspective in the context of a
deep penetration of EVs. It was shown that the costs and emissions of
grid reinforcements outweigh the benefits in costs and emissions in EV
charging optimization resulting from increased grid capacity. However,
substantial reductions in EV charging costs and emissions can be
achieved under the current transformer capacity.

Future research could study to what extent it is possible to avoid
grid congestion problems when using forecasts of the expected grid load
when scheduling EV charging with a transformer capacity constraint.
This research should compare the grid congestion levels with different
forecasting methods that are used with EV charging scheduling and
should also evaluate different methods to mitigate grid congestion

Fig. 6. Annualized grid investments, change in electricity costs and change in
electricity costs with a transformer upgrade of 400 kVA to 630 kVA in the in-
vestigated grid for different grid reinforcement scenarios. Results are presented
for an EV adoption rate of 100% and an installed PV capacity of 200 kWp. All
EVs in this scenario used aFRR prices to optimize their charging demand.

Fig. 7. Underestimation in model outcome and relative computational running
time of the aggregated EV charging model proposed in Section 2.3 using dif-
ferent numbers of EV charging transaction subsets. The model outcome and
computational time of a conventional EV charging model formulation is taken
as the reference. Installed PV capacity equals 200 kWp. EVs used marginal
emission profiles to optimize their charging demand.
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induced by forecast errors. Also, future research could look further into
the economic and environmental attractiveness of grid reinforcements
by using more-realistic EV charging schedules, which consider different
electricity markets and uncertainty in EV departure times. Furthermore,
future research could address when LV grid reinforcements are required
from a technical perspective when considering congestion and power
quality problems caused by greater penetration of variable renewable
electricity generation in the LV grid, as well as the electrification of
end-uses in buildings.
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Appendix A. Assumptions emission profiles

The 15-min average emission profiles and marginal emission profiles can be found in Figs. A1 and A2. The same methods were used as in [19,16],
respectively. However, some assumptions and modifications were made to adapt the profiles to the year 2018.

A.1. 15-min average emission profiles

Because of missing data in [25], some data modifications had to be performed. When generation data of a specific technology for one hour was
missing, data was filled using the forward fill method, i.e., data of the previous hour was used. When data of more than one hour was missing, the
data of the previous day was used.

ENTSO-E Transparency Platform [25] provides generation values for biomass generation and solar generation. However, these values are low
compared to official Dutch statistics [55]. Therefore, data was scaled to be in line with these statistics.

Subsequently, the remaining missing power generation in time step t was determined using the following equation:

= +P P P Pt t t
j

J

j tgen,missing, load,Powerstats, netexport, gen,Transparency, ,
(17)

i.e., the sum of the net export and the total Dutch electricity load taken per timestep from ENTSO-E Powerstats [56] was subtracted by the total
known generation power of technology j, with J being the total number of technologies provided by ENTSO-E Transparency Platform. For gas-fired
and coal-fired electricity generation, ENTSO-E Transparency Platform provides for 2018 a part of the data and no data, respectively. For these
technologies, it was determined which fraction Mcorr of the P tgen,missing, could be attributed the generation of technology j:

=M
P P

P
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j
t

T

j t j

t

T

t

corr,

gen,Transparency, , gen,CBS,

gen,missing,
(18)

Now, the P j tgen, , of coal- and gas-fired power plants could be determined using:

= +P P M Pj t j t j tgen, , gen,Transparency, , corr, gen,missing, (19)

Fig. A1. 15-min average emission profile for the Netherlands in 2018.
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A.2. Marginal emission profiles

Three modifications were carried out compared to [16]. First, data for the fuel prices was taken from [57]. Second, the least efficient gas-fired
power plant was assumed to be the Merwede-11 plant. Hence, the Velsen-24 plant, which is fired by blast-furnace gas, was excluded from the
analysis. Third, a factor representing the upstream emissions was included, taken from [58].
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